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Abstract. Models for the mutual potential energy between two molecules proposed in the scientific lit-
erature often contain a sum of inverse-power interactions involving pairs of sites belonging to the two
particles; in turn, these quantities are functions of a few scalar invariants involved in the problem at hand,
and one is often interested in directly obtaining an explicit expression of the potential in terms of the
latter; the extensively studied two-centre multipole expansion for the mutual electrostatic energy between
two charge distributions is a well-known example of this procedure and of its restrictions. We consider here
another, less widely known and possibly complementary, approach, proposed by Šebek some years ago [J.
Šebek, Czech. J. Phys. B 38, 1185 (1988)]; the resulting formulae show that this procedure can become
computationally favourable for sufficiently high molecular symmetry.

PACS. 02.30.-f Function theory, analysis – 02.60.-x Numerical approximation and analysis – 34.20.-b
Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions

1 Introduction

Models for the mutual potential energy between two
molecules proposed in the scientific literature [1–4] often
contain a sum of inverse-power interactions involving pairs
of sites belonging to the two particles; in turn, these quan-
tities are functions of a few scalar invariants involved in
the problem at hand, and one is often interested in directly
obtaining an explicit expression of the potential in terms of
these invariants; the extensively studied two-centre mul-
tipole expansion for the mutual electrostatic energy be-
tween two charge distributions is a well-known example
of this procedure and of its restrictions (see, for exam-
ple, Refs. [4,5]). The present paper addresses another, less
widely known and possibly complementary, approach [6].

To be more specific, let P, A, B, Q (in this order), de-
note any four distinct points in ordinary three-dimensional
Euclidean space, and let xP , xA, xB, xQ denote their
coordinate vectors with respect to a common arbitrary
Cartesian frame, defined by an orthonormal triad {el}; A
and B will eventually be interpreted as molecular centres,
P and Q as interaction sites. Thus

xQ − xP = (xQ − xB) + (xB − xA) − (xP − xA), (1)
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which gives rise to the corresponding expression for
|xQ − xP |2; it will prove notationally convenient to define

a = xP − xA, b = xQ − xB, R = xB − xA, (2)
a = |a|, b = |b|,
R = |R|, r = R/R, (3)

thus
|xQ − xP |2 = R2 + a2 + b2 + η, (4)

where
η = 2 [(b ·R) − (a ·R) − (a · b)] . (5)

Let us now consider the quantity

Φα = |xQ − xP |α, (6)

where α denotes an arbitrary real number; when α is an
even positive integer, Φα is just a polynomial in the appro-
priate scalar products; otherwise, under additional condi-
tions, it can be expanded in an infinite series; notice that
equation (6) can be rewritten

Φα = Rα(1 + ζ)β , ζ = (η + a2 + b2)/R2, (7)

where β = α/2; Φα can also be rewritten as [6]

Φα = ρβ(1 + ξ)β , ρ = (R2 + a2 + b2), ξ = η/ρ. (8)

The multipolar expansion (α = −1) and its extensions to
other values of α [5,10–14] (hereinafter referred to as ME)
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are based on a series expansion of equation (7) in powers
of ζ, under the condition R > (a + b); a general refor-
mulation of this treatment can be found in reference [15];
on the other hand, an expansion of equation (8) in powers
of ξ (hereinafter referred to as SE) was proposed by Šebek
some years ago [6], and applied by the same author in con-
nection with mesogenic potential models [7–9]; the condi-
tion for convergence, ξ < 1, is satisfied as long as the four
points are distinct [6]. In other words, there exists a close
range of mutual distances and orientations where ME of
equation (7) diverges, whereas SE of equation (8) remains
convergent; both expansions converge over the more dis-
tant range, and the latter has a better convergence than
the former [6,16]; a precedent of this idea can be traced
back to reference [17].

Let us now consider two sets of interacting points
{Pj , j = 1, 2, . . .M} and {Qk, k = 1, 2, . . .N}, arbitrar-
ily distributed around the two molecular centres A and B,
respectively; let

pj = xPj − xA, j = 1, 2, . . .M,

qk = xQk
− xB, k = 1, 2, . . .N, (9)

pj = |pj |, qk = |qk|, a = max(pj), b = max(qk); (10)

quantities ξjk, ηjk, ζjk can be defined by appropriate gen-
eralisations of the above ξ, η, ζ, respectively (Eqs. (4–8));
Φα is now generalised to

Ψα =
M∑

j=1

N∑

k=1

Cjk|xPj − xQk
|α. (11)

When R > (a + b), usage of ME in equation (7) makes it
possible to factor out powers of R, whose coefficients are
given by contracted products between appropriate inter-
action and multipole tensors, respectively (see, for exam-
ple, Ref. [4]); in turn, these tensors can be constructed in
two equivalent ways, i.e. in terms of Cartesian or spheri-
cal components; an alternative, computationally more ef-
ficient, approach has been studied in reference [15]. On
the other hand, usage of SE (Eq. (8)) yields a better con-
vergence, but, in principle, it leads to (MN) different infi-
nite series, one for for each power in equation (11). There
still exist some computationally favourable cases, of suf-
ficiently high symmetry, i.e. when all quantities pj have
a common value a, and all quantities qk have a common
value b, so that the (MN) infinite series can be collapsed
into one. In these cases one obtains a result of the form

Ψα = ρβ

×
[
σ0 + βσ1 +

β(β − 1)
2!

σ2 +
β(β − 1)(β − 2)

3!
σ3 + . . .

]
,

(12)

where

σL =
M∑

j=1

N∑

k=1

CjkξL
jk = τL/ρL, τL =

M∑

j=1

N∑

k=1

CjkηL
jk;

(13)

this expansion converges, in general, as long as all the in-
teracting sites remain distinct, and hence, in particular,
when R > (a + b); each term σL is independent of α,
and some of them may vanish by symmetry; if the quanti-
ties Cjk have a nontrivial common divisor C (e.g. a com-
mon value, or a common absolute value), this can be con-
veniently factored out. When both M ≤ 2 and N ≤ 2,
no more than four interacting points are involved, and
neither expansion appears to offer any significant compu-
tational advantage over the straightforward evaluation of
the appropriate powers.

As for notation, coordinates of the interacting sites in
the two extended molecules, i.e. the vectors pj and qk, will
be expressed in terms of two sets of orthonormal vectors
{uι, ι = 1, 2, 3} and {vκ, κ = 1, 2, 3} defining molecular
orientations (for example as defined by the eigenvectors of
the two inertia tensors); let us thus define

P ≡ {R, a, b}, (14)

O ≡ {λι, µκ, νικ, ι, κ = 1, 2, 3}, (15)

λι = uι · r, µκ = vκ · r, νικ = uι · vκ. (16)

As for the general structure of equation (12), each term σL

is a linear combination of products of rational functions
of P (radial functions, for short), multiplied by polyno-
mials in O (angular functions for short); each angular
function, in turn, can be re-expressed by a linear com-
bination of S−functions (see, e.g., chapter 3 in Ref. [4],
or Refs. [18–20]). On the other hand, radial expansion co-
efficients of equation (11) with respect to the S−function
basis can be obtained directly [12,14], possibly at the cost
of determining them in a purely numerical way; a similar
approach was used by Šebek in references [7–9].

Coefficients of the SE up to at least τ3 will be pre-
sented in the following, for some simple cases involving
identical interacting sites in two identical molecules; here
the common value of a and b shall be denoted by d; nu-
merical comparisons and a more extensive tabulation can
be found in reference [16]; the needed algebraic manipu-
lations were carried out by means of the packages Derive
and Maple.

2 Discrete interaction sites

2.1 Regular polygons

In the case of two identical regular polygons of N vertices,
coordinates of the interacting sites (Eq. (9)) are given by

pj = d (cosχju1 + sin χju2) ,

qk = d (cosυkv1 + sin υkv2) , (17)

where

χj = 2π(j/N), υk = 2π(k/N), j, k = 1, 2, . . . , N ; (18)

here the two unit vectors u3 and v3, respectively, have
been chosen to be orthogonal to the polygon planes; the
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expansion coefficients can be worked out for generic N as
well, and are given by

τ0 = N2 (19)
τ1 = 0 (20)

τ2 = N2 d2

[
d2

2∑

ι=1

2∑

κ=1

ν2
ικ + 2R2

2∑

ι=1

(
λ2

ι + µ2
ι

)
]

= N2 d2
[
d2

(
1 + ν2

33

)
+ 2R2

(
2 − λ2

3 − µ2
3

)]
(21)

τ3 = 12N2 d4 R2
2∑

ι=1

2∑

κ=1

λινικµκ (22)

τ4 = N2 d4
(
6F1 + 6d2R2F2 + d4R4F3

)
(23)

where

F1 =
2∑

ι=1

(
λ4

ι + µ4
ι

)
+ 2

(
λ2

1λ
2
2 + µ2

1µ
2
2

)
(24)

+ 4

(
2∑

ι=1

λ2
ι

) (
2∑

κ=1

µ2
κ

)

F2 = 4 [λ1λ2 (ν11ν21 + ν12ν22) + µ1µ2 (ν11ν12 + ν21ν22)]

+
(
λ2

1 + µ2
1

)
ν2
22 +

(
λ2

2 + µ2
2

)
ν2
11

+ 3
(
λ2

1 + µ2
1

)
ν2
11 + 3

(
λ2

2 + µ2
2

)
ν2
22

+
(
λ2

1 + µ2
2

) (
3ν2

12 + ν2
21

)
+

(
λ2

2 + µ2
1

) (
3ν2

21 + ν2
12

)

(25)

F3 = +(9/4)
(
ν4
11 + ν4

12 + ν4
21 + ν4

22

)

+ (9/2)
(
ν2
12 + ν2

21

) (
ν2
11 + ν2

22.
)

+ (3/2)
(
ν2
11ν

2
22 + ν2

12ν
2
21

)
+ 6ν11ν12ν21ν22. (26)

2.2 Cube, tetrahedron, octahedron

In working out results for these polyhedra, it proves con-
venient to start from a cube with edge length 2∆, and to
consider the other two figures as suitably inscribed in it,
i.e. the vertices of the octahedron occupy centres of cube
faces, and vertices of the tetrahedron occupy every other
vertex of the cube.

For the octahedron, ∆ = d, ρ = R2 + 2d2, and re-
sults read

τ0 = 36 (27)
τ1 = 0 (28)

τ2 = 16

[
3d2R2

3∑

ι=1

(
λ2

ι + µ2
ι

)
+ d4

3∑

ι=1

3∑

κ=1

ν2
ικ

]

= 48 d2
(
2R2 + d2

)
(29)

τ3 = 192 d4 R2
3∑

ι=1

3∑

κ=1

λινικµκ (30)

τ4 = 16

[
12d4R4

(
3∑

ι=1

λ4
ι +

3∑

κ=1

µ4
κ + 2

)

+24d6R2
3∑

ι=1

3∑

κ=1

(λ2
ι + µ2

κ)ν2
ικ + 4d8

3∑

ι=1

3∑

κ=1

ν4
ικ

]

(31)

τ5 = 2560

{
d6R4

3∑

ι=1

3∑

κ=1

[
λιµκ

(
λ2

ι + µ2
κ

)
νικ

]

+d8R2
3∑

ι=1

3∑

κ=1

λιµκν3
ικ

}
. (32)

For both cube and tetrahedron, ρ = R2 + 6∆2; results for
the cube read

τ0 = 64 (33)
τ1 = 0 (34)

τ2 = 256 ∆2
(
2R2 + 3∆2

)
(35)

τ3 = 3072 ∆4 R2
3∑

ι=1

3∑

κ=1

λινικµκ. (36)

τ4 = 1024
(
b4∆

4R4 + b6∆
6R2 + b8∆

8
)
, (37)

where

b4 = 12 − 2
3∑

ι=1

λ4
ι − 2

3∑

κ=1

µ4
κ (38)

b6 = 36 + 24
3∑

ι=1

∑

κ �=ι

3∑

l=1

(λιλκνιlνκl + µιµκνlινlκ) (39)

b8 = 27 − 2
3∑

ι=1

3∑

κ=1

ν4
ικ + 24c8 (40)

c8 = ν32ν33ν12ν13 + ν21ν31ν33ν23 + ν22ν32ν33ν23

+ ν13ν21ν11ν23 + ν21ν22ν12ν11 + ν11ν32ν31ν12

+ ν11ν33ν31ν13 + ν31ν32ν22ν21 + ν22ν23ν12ν13. (41)

For the tetrahedron:

τ0 = 16 (42)
τ1 = 0 (43)

τ2 = 64 ∆2
(
2R2 + 3∆2

)
(44)

τ3 = 768 ∆3
(
R3F1 + ∆R2F2 + ∆2RF3 − ∆3F4

)
(45)
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where

F1 = (µ1µ2µ3 − λ1λ2λ3) (46)

F2 =
3∑

ι=1

3∑

κ=1

λινικµκ (47)

F3 = +ν11 (µ2ν13 + µ3ν12 − λ2ν31 − λ3ν21)
+ ν22 (µ1ν23 + µ3ν21 − λ1ν32 − λ3ν12)
+ ν33 (µ1ν32 + µ2ν31 − λ1ν23 − λ2ν13)
+ (µ1ν12ν13 + µ2ν21ν23 + µ3ν31ν32

−λ1ν21ν31 − λ2ν12ν32 − λ3ν13ν23) (48)
F4 = +ν11ν22ν33 + ν11ν23ν32 + ν12ν21ν33

+ ν12ν23ν31 + ν13ν21ν32 + ν13ν22ν31. (49)

3 Continuous distributions of interaction sites

3.1 Rings in 3 – d space

The above treatment can also be applied to uniform con-
tinuous distributions of interaction centres, so that the
sums appearing in equation (13) are replaced by appro-
priate integrals; for example, for two circular distributions
(rings in 3 − d space), equation (17) is modified to

p = d (cosφ1u1 + sin φ1u2) , q = d (cosφ2v1 + sin φ2v2) ;
(50)

after some algebra, results can be expressed in terms of
the three relevant scalar products λ3, µ3, ν33, i.e.

τ0 = 4 π2 (51)
τ1 = 0 (52)

τ2 = 4 π2 d2
[
d2

(
1 + ν2

33

)
+ 2R2

(
2 − λ2

3 − µ2
3

)]
(53)

τ3 = 48 π2 d4 R2
(
1 − λ2

3 − µ2
3 + λ3µ3ν33

)
(54)

τ4 = +24 π2 d4 R4

×
[(

2 − λ2
3 − µ2

3

)2
+ 2

(
1 − λ2

3

) (
1 − µ2

3

)]

+ 48 π2 d6 R2

× [
2 − 2λ2

3 − 2µ2
3 −

(
λ2

3 + µ2
3

)
ν2
33 + 4λ3µ3ν33

]

+ 24 π2 d6 R2
(
2 − λ2

3 − µ2
3

) (
1 + ν2

33

)
. (55)

Elimination of other scalar products is accomplished by
recalling that, for any two vectors a, b, and for any or-
thonormal triad {fl},

2∑

l=1

(a · fl)(b · fl) = (a · b) − (a · f3)(b · f3), (56)

and repeatedly applying this identity.

3.2 Coplanar rings and spherical shells

The above treatment can be applied to these cases as well,
both involving a function of just one independent vari-
able (R): here some exact solutions are available (see be-
low), and other numerical strategies (such as tabulation of

results obtained by numerical integration and subsequent
interpolation) may become preferable.

In the first case the common plane is identified with
the coordinate (x, y) plane, and r can be taken to define
a coordinate axis, say R = Re1, thus

p = d (cosφ1e1 + sinφ1e2) , q = d (cosφ2e1 + sin φ2e2) ;
(57)

the resulting formulae read

τ0 = 4 π2 (58)
τ1 = 0 (59)

τ2 = 8 π2 d2
(
2R2 + d2

)
(60)

τ3 = 48 π2 d4 R2 (61)

τ4 = 24 π2 d4
(
d4 + 8d2R2 + 6R4

)
. (62)

These expressions can also be obtained as a special case
of the previous ones, by setting λ3 = µ3 = 0, ν33 = ±1.

Notice also that, for α = −n, where n denotes an even
positive integer, integration with respect to the first an-
gle can be carried out by the method of residues [21]; for
α = −2 or α = −4, integration over the second angle can
be carried out in closed form as well, yielding

Ψ−2 = 4π2d2 1
R
√

R2 − 4d2
, (63)

Ψ−4 = 4π2d4 (R4 − 2d2R2 + 4d4)
R3(R2 − 4d2)2

√
R2 − 4d2

. (64)

In the case of spherical shells, coordinates of the interact-
ing sites are parameterised by

p = d (sin θ1 cosφ1e1 + sin θ1 sin φ1e2 + cos θ1e3) ,

q = d (sin θ2 cosφ2e1 + sin θ2 sin φ2e2 + cos θ2e3) , (65)

and, without any loss of generality, R = Re3; the resulting
formulae read

τ0 = 16 π2 (66)
τ1 = 0 (67)

τ2 =
64
3

π2 d2
(
d2 + 2R2

)
(68)

τ3 =
256
3

π2 d4 R2 (69)

τ4 =
256
15

π2 d4
(
3d4 + 20d2R2 + 16R4

)
. (70)

Notice in this context the exact result reported by
Girifalco [22]:

∫
dω1dω2|xQ − xP |−n =

4π2

d2(n − 2)(n − 3)

×
{

1
R

[
1

(R − 2d)(n−3)
+

1
(R + 2d)(n−3)

]
+

2
R(n−2)

}
,

(71)

where n > 4 is a positive integer, and
∫

dω1dω2 denotes
integration over the two spherical surfaces.
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4 Conclusions

In the present paper we have revisited an alternative
to ME for general inverse-power interactions, originally
proposed by Šebek [6–9]; we have taken the two molecules
to possess M and N interacting sites, respectively, and
considered the special case where the M sites are all placed
at a common distance a around the first molecular centre,
and similarly the other N sites are placed at a common
distance b around the second molecular centre. This com-
paratively high symmetry plays an important rôle, making
it possible to collapse MN series into just one, whose coef-
ficients can be evaluated in closed form, at least up to some
order; formulae have been worked out in detail for some
further simplified cases involving identical interaction sites
in two identical molecules, thus a = b and M = N . The
above results suggest that this approach becomes compu-
tationally convenient as the number of interacting sites
increases, or, even better, for continuous distributions of
interacting centres, e.g. rings in 3−d space (in which case
the interaction energy, resulting from numerical integra-
tion over two angles, is a function of seven independent
variables). Let us mention in closing that references [7–9]
dealt with mesogenic molecules: the above formulae for
rings in 3−d space may be a useful starting point for sim-
plified potential models of disk-like mesogenic molecules.
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6. J. Šebek, Czech. J. Phys. B 38, 1185 (1988)
7. J. Šebek, Czech. J. Phys. B 38, 1194 (1988)
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